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INTRODUCTION

The three-dimensond (3D) numerica smulation of both Single Bubble
Sonoluminescence (SBSL) and Multi-Bubble Sonoluminescence (MBSL) phenomena
alows one to study the bubble ingtability mechanisms which may limit the achievement
of ultra-high gas temperatures for bubble fusion and other important applications (e.g.,
sonochemidry).

The HY DRO-RPI/3D code alows for the direct numericd simulation (DNS) of
three-dimensiond bubble dynamics. The caculation domain conssts of two regions
separated by avapor/liquid interface. The two regions have different dengties,
velocities, and temperatures, which are determined by separate conservation and state
equations.

One of the mgor chalenges in the development of HY DRO-RPI/3D was how to
handle shocks and the moving interface. Depending on the circumstances a the
interface, one can use ether amoving mesh method or afixed mesh method (with
interface-cgpturing capability). A moving mesh method typicaly requires discretization
of the liquid and gas domain separately and computation of the motion of the interface by
moving the mesh for each time step to reflect the current configuration (e.g., arbitrary
Lagrangian-Eulerian methods: Hirt et d. [1], Donea[2], Hughes et d. [3], and Liu &
Bdytschoko [4]; stabilized space-time finite dement methods: Tezduyar et d. [5-6], in
which remeshing is needed when the mesh digtortion becomes too high).

In 3D smulations, especidly those based on paralel computing, reducing the
frequency of automatic remeshing becomes essential, because the cost of too frequent 3D



automatic mesh generation becomes prohibitive. When the interface is complex and very
unsteady reducing the frequency of mesh generation becomes a difficult task, and
sometimesiit is not possible. In such cases, interface- capturing methods with fixed
meshes have been used. These interface- capturing methods are more flexible but yield
less accurate representation of the interface compared to moving mesh methods.

The spatid discretization methods used in HY DRO-RPI/3D are based on finite
element methods which are available for gpplication with ungtructured grids. In
particular, the Galerkin/L east- Squares method of Hughes et d. [7-8], or the Streamline
Upwind Petrov-Gaerkin method (SUPG) method of Francaand Hughes[9]. They have
proven to be stable and higher order accurate for flows ranging from inviscid to viscous.
In HY DRO-RPI/3D, we solve, over the non-moving mesh, the conservation equationsin
each phase together with a trangport equation governing the evolution of the phase
indicator function, which identifies the two fluids. One of the objectivesin thiswork is
to accurately resolve and advect the interface between the two phases. To increase the
accuracy in representing the interface, we use an adaptive grid corresponding to enhanced

discretization &, or near, the moving interface.

THE GOVERNING EQUATIONS

This section summarizes the consarvation equations which are numericaly
evaduated in HY DRO-RPI/3D. These computations involve the solution of the trangent
Navier- Stokes equations of compressible flow. The conservation equations for phase-k
may be written in Cartesian coordinates as.
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In these equations, I' | isthedensty; Uy, V| and W, arethe velocity componentsin
thex, y and z directions, respectively, Py isthe static pressure;
Uy ko Uy ko Uxz ko Tyy ko Tyzk @d Tz i arethe components of viscous stress; €
isthe specific total energy given by,
1
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where e is the specific internd energy; qg{gk,q@k and g8y arethex,y, and z

components of the energy flux due to both heat conduction and mass diffusion; qgt isa

volumetric heat source.



The condtitutive equation for a Newtonian fluid relates the viscous stress tensor to

the rate of strain tensor as.
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where 1M}, and | k arethefirst and second coefficients of viscosity, respectively.

The energy flux components are given by:
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where K isthetherma conductivity, T}, isthe temperature, Iy isthe specific enthalpy
of species-i, Dj isthe effective binary diffusion coefficient for species-i in the mixture,

and mass consarvation requires that the sum of the species densties should equa the
dengty of the mixture, i.e.
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Thefirg termin Eq. (8) is the energy flux due to thermal conductivity, while the second
term isthe energy flux due to diffusion of the species. For this later term, Fick’slaw has
been used to describe the effect of diffuson. The equations of state which are valid for

highly compressed fluids are of the form (Bae et d. [10)):
Pk = P (r k. Tk), and, ex =ex(r,Tk) (10)
The specific heats of the fluids mixture at constant pressure and congtant volume
aregiven by:
_ 1, _ 1,
cp’k——acpiri,and,c\,’k——ac\,iri. (11)
Mk i Mk i
where Cpi and Cy; arethe specific heats for species-i at constant pressure and constant
volume, respectively.
The motion of the individua speciesin phase-k are determined through the mass
diffuson equation:
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If we sum Eqg. (12) over dl the species and use Eqg. (9) with the mixture continuity
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Equation (13) states that molecular diffusion done produces not net mass trander, hence
no-change in the mixture dengity.

A phaseindicator function, F , serves as amarker identifying each fluid with the
definition F = {1 for liquid, k = 1, and O for gas, k=2}. The interface between the two
fluidsis often gpproximated to beat F = 0.5. The evolution of the interface function, F ,
is governed by atime-dependent advection equation:



where Up, V| and W, arethe interface velocity componentsin the x, y and z directions,

repectively. How accuratdy thislaw will be modeed will depend on how accuratdly the
boundary between F =1 and F = 0is represented and advected.

The governing equations given above can be applied to each phase up to an
interface, but not acrossit. A particular form of the balance equation should be used a
an interface in order to take into account the “jump” (i.e., the sharp changes or
discontinuities) in the various variables.

Theinterfacia mass baance equation isgiven by:
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& (Vi - vi)Ony =0, liuid phasefor k = 1 and gasphasefork = 2. (15)

Wenote Ny =- Ny, where Nq and Ny are the outward unit norma vectors from the
interface between phases 1 and 2. We have from Eq. (15),
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Noting thet the interfacia mass flux from the ki, phase (due to phase change) is.
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Substituting Egs. (16) and (17), we have
(ri-ro)
rirz
The interfacid energy badanceis given by:
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where theinterfacial heet flux is, qfff = - kkNTk, and hy isthe generalized latent heat

(h¢g for fluids in thermodynamic equilibrium). Also, we have from kinetic theory,
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From an additiona “body force” which accounts for the surface tenson force, the

where, K =

liquid pressure & the interface is given by,
pu = P2 - sH(x,t)ny, 22)
and, NPy + Mty =nNopp +Nolt o) - sHN
where s isthe surface tenson of the interface, H is the curvature of the interface (only
non-zero for elements that comprise the interface) and n, istheinterface’s normal

vector.

The molar concentration of dissolved gas  the interface comes from an
goplication of Henry’s Law, which rdaesthe interfacid concentration of agasin the
liquid to the partid pressure of the gas adjacent to the liquid:

pgl

c=Pa
HC

(23)

where pgl isthe partid pressure of the gas at the bubbl€ sinterface, and H; isthe

congtant of Henry's Law.

EQUATION OF STATE
The Air Equation of State

Theided gasequation of Sate, Pp=r (g - 1)e, where g = 1.4, has often been
used for numerica evauations during bubble growth and the initid collapse phase (a(t) >

2a0), however, if we assume an adiabatic process, the pressure and temperature are less



than the initia room temperature, which is not redidtic. In generd, the numerica
smulaions of bubble collgpse in the sonoluminescence regime depends strongly on the
equation of ate that is used to describe the air. Comparing the results obtained using an
ided gas (g = 1.4) and a high pressure equation of state (Moss et d. [10]), thereisa
(huge) difference between the maximum temperatures at the center of the bubble of about

735¢eV (Tmax = 875 €V, for anided gas, and, Tmax = 140 eV using ahigh pressure

equation of state). For an air bubble, during the find collgpse phase, we may use the
high- pressure equation of State given by Moss et d. [10]. This equation of Sate for air

includes vibrationd excitation, dissociation, and repulsve intermolecular potentias:
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where, m = 0.5 [tanh[7(T-0.9Tk] + tanh [0.63]], & M, R=R/288,isthegas
1=1

congtant for air, and, mp, (O<nmp <1, Tp=9.7ev), m(0<m<1; T1.5=14.5, 29.6,

47.4,77.5,and 97.5eV), n (=9) r 9 (=1.113 g/co), Ec (22,52 x 10° erg/g), and, Q (=3340

K), are the dissociation of molecular nitrogen, the ionization, intermolecular potentias,
the maximum densty of the air, the binding energy of fully compressed air, and the
vibrationd contributions in the energy equation, respectively.



Noble Gas Equations of Sate

The noble gas equations of state (EOS) for argon and krypton were constructed
from a combination of EOS table (Taleyarkhan [11]) and theory (Z€’ dovichi [12]). The
andyticd equation of gtate for argon and krypton which fit the EOS table (Tale2arkhan
[11]) are given by:
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where m is the average vaue of ionic charge discussed in Chapter 4, R = R/28.8 isthe gas
constant, the maximum dengties, I g , for argon and krypton are 1770.7, 3090.0 kg/m3,
respectively, the binding energies, E, for fully compressed argon and krypton are,

respectively, 1.935 x 105 and 1.3265 x 105 Jkg. Thenumericd vduesfor,j ,a, b, and

have been computed from:
2 j
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where the coefficients ¢ and A; for argon and krypton are presented in Table 1 and Table

2, respectively. Figures 1 and 2 show the energy and pressure isotherms calculated using
the analytica equation described above and the data from EOS tables (Taeyarkhan [11])
for argon and krypton.

The Water Equation of Sate

When an outward moving, large positive velocity, produced due to the reflection
of strong shocks at the center of the bubble, arrives at the gag/liquid interface, the water

(25)
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pressure near the interface becomes high enough to require the use of anonlinear
equation of state (Moss et d. [10]). For awater equation of state, we used a polynomia
equation of state constructed by combining the predictions of severa theoretica codes
and experimenta data (Ree [13]). The ionization process, and chemica equilibrium
among dissociation products of water were al congdered in thisequation. An andyticd
form for the equation of Sate of water is given by:

&3, +GyE + GE +G4E3 6

p=(1+z + and G = a AZJ (26)
(1+z) Gg+GeE+G,E2 5 i=0 °

wherepisin Tpa, z=r/r°- 1, E(tpa) = er °, and, r ° = 0.998 Mg/n® (density at 298.5 K
and standard pressure). The coefficients Ajj for in Eq. (26) are presented in Table 3. The
range of applicability of Eq. (26)is0.025<T <10eV and 0.998 <r < 40 Mg/nt, and,
p> 102 Mpa. Notethat p and E in Eq. (26) are expressed in Tpa

In addition to the above, we have developed an expression for the interna energy
in terms of temperature and dengity. To derive this expression, we used the method
proposed by Gurtman et d. [14]. Invoking a thermodynamic identity, we write:

po 5
T /r r. 27
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For example, the compressond energy of amaterid is soldy afunction of its

degree of compression. Integrating Eq. (27) yidds
e(r.T)=g g(r)dr +f(T) (29)
0
where the function f(T) represents the contribution due to the therma motion of the

molecules within the lattice. Assuming that the therma contribution to the interna

energy islinear with T, we obtain:

&eo _ . - constant. (29)

&7 &

This assumption implies.

e—eO:cV(T—TO)+QrOg(r)dr (30)
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where the subscript O refer to the initid state of the materid. Once forms of the

compressond energy function g(r ), and asuitable vadue of ¢, are chosen, temperatures

may be caculated using the dengity and internd energy, which are known. These
quantities can be determined from the equation of state (EOS) data reported by Ree [13].

The assumption of a constant ¢, requires that a compromise value be selected from the
gparse EOS data. The ¢y value chosen was 3.263 kJkg-K, to give asuitablefit of the

EOS data. Numerica valuesfor g(r ) have been computed from the various combinations

of high pressure isotherms from the rdation:

pi(r)- (T/Tj)p;

9(r)=—" ) (31
where the subscripts denote particular isotherms. A polynomid fit to average vaues of
these numericd datais given by:
) :
g(r)=a ¢ (32)

Coefficients ¢ are presented in Table 4. Figure 3 showsthe interna energy as function

of dengity for Rice and Wash's data[15], which are for the water Hugoniot centered at
20°C and 1 bar. Using this equation of state for water and the data shown in Fig. 3(a), it
is astraightforward matter to calculate the pressure, temperature, and speed of sound.
These curves are plotted in Figs. 3(b-d). The Rice and Walsh data[15] are dso shown
for comparison to the present formulation.

These equations of sate have been evauated using a one-dimensond verson of
the conservation equations. The name of the computer code which was developed for
this purpose was HY DRO-RPI [16].

Figures-4 show that there is good agreement with the available data[17], [18]. In
addition, Figure-5 shows that there is good agreement between HY DRO-RPI and
KYDNA, the HY DRO code developed at Lawrence Livermore Laboratory [19]. These
comparisons verify the equations of state and serve as good benchmarks for HY DRO-
RPI/3D.
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A NUMERICAL FORMULATION
The locd, instantaneous generic balance equation for each phase can be expressed

in consarvative form as.

U, +Fadv = pdff o 33)

wherein three dimensions, the vector of the Sate variables, U, is.
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11010 G
A
. i th i 'fdJJ' ¥
P =rui U y+pidyy, (35)
| | | |
i U3 i i d3i i
Tetot'r') T U b
The diffusive flux in theithy direction, F9'1  is
il 0 70y
AP R
SR 0 j
M=t ta y+pi 0y, (39
| | | |
(A0
ftaujp  ¥-Gb

and the source vector, S, is.
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The above vectors are written in terms of dengity, r, Cartesian velocity components,

tot

u ={u1, u2,U3}T , total energy per unit mass, € =e+|u|2/2, whereeisthe

interna energy per unit mass, thermodynamic pressure is p, the viscous-stress tensor is

t= 8 i] H’ hest flux vector is q ={C]1, qz,%}T , the body force vector per unit mass

k_)={b_L, bz,b3}T, and the heat source per unit massisr © r q® Also, dij isthe
Kronecker delta i.e, dij=q for,i = jand djj =0 for I'1 j), acommarepresents partia

differentiation and the summeation convention is used throughout. As noted previoudy,
we condder as condtitutive rdations alinear deformation law for the stress tensor and the
Fourier' slaw for heat conduction. That is,

tij = r‘r‘(ui,j +uj’i)+l U kdij (38
g =- kT,i (39

For convenience, we definethe congtant x =1 + 2m Using any set of variables Y, it is

possible to rewrite Eq. (33) in quas-linear form as:

AYHAY;=[K, Y, )i+ (0
where, éo =U.,y ,él = Ei"’}gv istheith Euler Jacobian matrix, and, ﬁij isthe
diffusivity matrix, where, ﬁin’j = F?iﬁ )

In HY DRO-RPI/3D the SUPG gabilization method was applied with linearly

interpolated pressure-primitive variables.
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The equation of states discussed in Section 3 have been used to cdculate the partia
derivativesin the matrices. The diffusivity coefficient matrices, éij , Where
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Here, we consder the system of governing equations arising when the evolution of the
interface function, defined in Section 2, is gppended to the locd, instantaneous generic balance
equation. For convenience, U and Y are repeated here:
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The advective Jacobian matrice, él = E?g(v’ are given by:
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For the discussion that follows; it is helpful to define the quasi-linear operator of Eq. (40)
as.
& 0
Lopatsp L I T2 54
-7 T X & X g
fromwhich L can be naturally decomposed into time, advective, and diffusve components
L=L,+L_ , +L (55)

= =t =adv =diff’
Using this, we can rewrite Eq. (40) assmply, EX =S
To help proceed with the finite eement discretization of the locd, ingtantaneous generic
balance equation, Eg. (40), we can define some notation. First let W represent the closure of the
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physical spatid domain (i.e., WE G where Gis the boundary). Next, Wis discretized into ng

finite dements, WP, To derive the so-called wesk form of Eq. (40), the entire equation may be
dotted from the left by a vector of weight functions, W, and integrated over the spatid domain.
Integration by partsis then performed to move the spatid derivatives onto the weight functions

(reducing the continuity requirements). This process leads to an integra equation (often referred
to as the wesk form), in which we seek to find Y such that,

0= oW XA Y. - W, E Y +w T - woslaw- aw o FF + EI G
wW G

<

+

Qo

oL"Wst (LY - S)dwe (56)
1We
Thefirg line of Eq. (56) contains the Gaerkin approximation (interior and boundary) and the

second line contains aleast- squares sabilization. The SUPG gtabilization is obtained by

e

: T
replacing L by galldv'

To develop anumericd method, the weight functions (W), the solution variables (), and
their time derivatives (Y, ), are expanded in terms of basis functions using (typicaly) piece-

wise polynomids. Theintegrasin Eqg. (56) are then evauated using Gauss quadrature, resulting
in asystem of non-linear ordinary differentid equtions which can be written as,
MY,:=R(Y) (57)
where Y isthe vector of the solution at discrete points (interpolated through the space by the
basis functions), and (Y ,; ) arethetime derivative values a the same points. Animplicit,

second order accurate family of time integrators has been used for gpplication to this problem.
The method resultsin a non-linear matrix problem that is solved in a predictor-corrector format
yieding successve linear problems. Each linear problem is then solved using a Matrix-Free
Generdized Minima Resdud (MFGMRES) solution technique with a block diagond pre-
conditioner which was devel oped by Johan et a. [18]. Convergence of the non-linear problem is
confirmed before moving to the next step.
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LOCATION OF INTERFACE

The treetment of the interface is crucid for the application of right condtitutive lawsto
each phase. We use afixed mesh and atransport equation for the position of interface Eq. (14).
Based on the values of phase indicator function, F , at the nodes, an example for prediction of the
interface location is shown in Fig. 6.

Let us assume that an intermediate value marks the interface (i.e,, F = 0.5). Therefore
there is no interface between the two nodes if both indicator functions greater or less than 0.5,

(i.,e, F1and F 3). Except for these conditions, the point indicating the interface between two
nodes is caculated by linear interpolation, for example:
_0.5- ¢

Cxa

1 (58)
F5-F%

where, Cyq =
- X2 - X

, and, Cyg = Ff— Cx1Xq- The'y), and z;, arecdculated in the same

manner as above,
It should be noted that the vaues of the two- phase State variables are dso given by
interpolation of the FEM results. For example, the two-phase density comes from,
my - my
V( +Vv

r =

where, for example, the V, comes from alinear interpolation using Eq. (58). This approachis
different from standard V OF formulations which smear the interface.
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NUMERICAL SIMULATION OF A SINGLE BUBBLE:

The following cases have been damulated usng the numerica treatment described in the
previous sections

1.Moation of asngle bubble in pure advection flow

2.Risng of sngle bubble in stagnant pool
These tests verify that our VOF method can solve 2D problems as required a this stage of the
grant.

PRELIMINARY RESULTS:
1.Mation of asingle bubblein pure advection flow

This is the amulaion of a bubble in a pure convection channd. The bubble is initidly
located at the bottom of the channe as shown in the Figure7. Then the fluid enters the channd
with a uniform flow of 1m/sec in vertica direction (x-direction). In this smulation, the buoyancy
effect on the bubble is not consdered, so it is a pure convection flow. At the channd inlet, the
uniform veocity of the flow is prescribed and a the exit of the channd condant pressure
boundary condition is gpplied. The channd is consdered periodic in the sdes (y-direction), and
the channd wals (zdirection) are prescribed with a zero veocity normd to the wadl, and with
zero traction.

The grid gpplied has 40 dements in x-direction, 16 eements in y-direction and a single
eement in zdirection. The time step chosen is 1.25 sec. In the absence of the buoyancy force,
the bubble should move dong the channd with the speed of the fluid. Figure8 and Figure9
shows the pogtion of the bubble in the channd after 20 and 40 time Steps respectively. As
expected the bubble is moving with the velocity of the fluid, which dearly reflects in the figures,
as the bubble is advanced by 10 eements in 20 time steps, and by 20 eements in 40 time steps,
indicating that the bubble is moving with avelocity of 1nvsec.

2.Risng of sngle bubble in sagnant pool

This is modding of the bubble motion due to buoyancy in a dagnant pool of fluid.
Initidly the bubble is a rest a the bottom of the pool as shown in the Figure.10. In this case a
gravitationd force of 0.08m/sec® is gpplied in the negative y-direction. Due to the buoyancy
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force acting on the bubble, the bubble should rise through the stagnant poll pushing the fluid
aside.

A zero veocity boundary condition is gpplied at the bottom of the pool, and a congtant
pressure boundary condition is assigned to the pool surface. The pool is made periodic in both X,
and z-directions. A hydrodtatic pressure profile is defined as an initid condition for the entire
pool domain. The grid used has 80 eements in ydirection, and 64 eements in xdirection and a
sngle dement in zdirection. A time step of 0.25 sec is used for the results presented here. The
postion of the bubble after 20 time steps and 40 time steps is shown in he Figures 11 and 12.
From the figures it is clear that the bubble started to rise under the effect of buoyancy. As the
bubble raises though the pooal, the fluid surrounding the bubble gets pushed up and around the
gdes as shown by the fluid velocity vectorsin the figures.

CONCLUSIONS

With the equation of state well defined and the 2D VOF results vaidated we are now prepared to
turn our atention to 3D bubble dynamics as require for the smulation of sonoluminescense. The
VOF results while encouraging will dso be compared to level set methods which are expected
to more eadily track the discontinuous interface between the two phases.
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Figure4a Bubbleradiusasfunction of time; points are experimental data of Barber
et al at 20°C [1994] and theline correspondsto HY DRO-RPI predictions.

Figuredb Comparisonsof HY DRO-RPI with helium data [Delgadino, 1999].

Figure4c Comparison of the HY DRO-RPI with argon data [Delgadino, 1999].
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Figures5 Spatial profiles of various parametersat threetimes (to, t1, and t2) before
Tmax occurs, and onetime (t3) after Timax occur s (T max iSthe maximum temperature
dueto strong shock rarefaction at the center of the bubble). Adiabatic conditions
assumed for an oscillating air bubble.



Figure6 Example of location of interfacewith indicator function, F
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